Problem A
k-ary Tree Game

Input file: pa.txt

Problem Statement

The k-ary tree game is played by two players, you and your opponent. The two
players alternate in hacking away edges from a complete k-ary tree and removing
those pieces of the tree that are no longer connected to the root node. Initially, You
move first and you are given a complete k-ary tree with n edges, numbered froml to n,
where an edge at index i has (at most) k children-edges at indexes (k-i+1), (k-i+2), ...,
and (k-i+k) and a parent-edge at index | (i-1)/k]. All leaf nodes of this k-ary tree are at
some depth d or d-1, and all leaves at depth d are toward the left. The first player who
has no legal move (no edge to remove) loses. You may assume that your opponent
play optimally. Your task is to find all winning moves for the initial configuration.

For example, the following figure shows the game tree for a complete 2-ary (i.e.
binary) tree with n=5 edges. Initially, you have 5 possible moves, that is, removing
edges 1, 2, 3, 4, or 5. Your opponent moves next. In this figure, we only show the
complete results for the leftmost 3 subtrees. The remaining 2 subtrees can be derived
in a similar way. From this figure, we can see that you have exactly 3 winning moves:
removing edges 3, 4, or 5. The remaining two moves (removing edges 1 or 2) will let
you lose the game. In this figure, we use bold arrows to denote the winning moves for
any player in that configuration.

Given a complete k-ary tree with n edges, please write a program to find all of
your winning moves in the initial configuration. We assume that 2 <k <5andk<n<
1000.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ‘/ character separating two
consecutive test cases. The last line of the input file contains a . character denoting
the end of the input file.

For each of the test cases, a complete k-ary tree is given. Each tree is described
n terms of & and », where k is the number of degree and » is the number of edges.

Output Format

The output data contains the answers for all test sets. Each test set ends with a /.
However, the last test set ends with double slashes *//’. For each test set, output all the
winning moves in a line, from small edge index to large edge index. In case of no
winning moves, please just output a number “0” in a line.

Sample Input

5

WS N NN D
~J JIsN

2

57

Sample Output
3 4 5

/

~NHE N W N O

Problem B
Conflict Analysis
Input file: pb.oxt

Problem Statement

Conflict analysis is a field whose importance is increasing as distributed
computer systems becomes more and more prevalent. Conflict analysis may be
applied to many different areas where a conflict can arise, such as business,
government, political and military operations, and labor-management negotiations. A
typical conflict situation consists of a set of agents (parties) and a set of issues. Each
agent may be for or against an issue. Assume that we have n agents and m issues. A
conflict situation can be represented as an »nxm Boolean-valued matrix C, where
C(i,/)=1 means that agent i is for issue j, and C(i,/))=0 means that agent / is against
issue .

For example, in the Middle-East conflict, let us consider six parties: 1. Israel, 2.
Egypt, 3.Palestinians, 4.Jordan, 5.Syria, and 6.Saudi Arabia.

Five issues that effect the relationship between these parties are::
Autonomous Palestinian state on the West Bank and Gaza
Israeli military outpost along the Jordan river

Israel retaining East Jerusalem

Israeli military outposts on the Golan Heights

Sk RN e

Arab countries granting citizenship to Palestinians who choose to remain within
their borders.

The attitudes of these six parties toward these five issues are represented in the
following matrix:

— == —

r—iO | ===
ol fendl fewll Lol Eanll g

—1OoI0|IC|—=|—
[(] [l Fend Fanll o)

To analyze the causes of the conflict, we must consider the importance of each
issue. For a subset of issues S < {1, 2, ..., m} and an issue jeS, we said that j is a
secondary issue in S if any two agents who agree on all issues in S-{j} also agree on
1ssue j. Otherwise, / is a primary issue in S. Formally, j is a secondary issue in S if

forany 1 <ij, i <n, C(i), k) = Clis, k) for all k eS-{j} implies C(i1, j) = C(iz, /).

A subset of issues S < {1, 2, ..., m} is called an independent set if each issue in S
is a primary issue in S. An independent set S is called a reduct if any two agents who
agree on all issues in S also agree on all issues not in S. In general, a conflict situation
may have several different reducts. Let R| and R, be two reducts of a conflict situation,
we say that R, is better than R, if

min(Rl- Rz) > mjn(Rz— Rl)

For cxample, in the Middle-East situation, we have two reducts {1,2,4,5} and
{2,3,4,5}. {2,3,4,5} is better than {1,2,4,5} since

min({2,3,4,5}-{1,2,4,5})=min({3})=3> min({1,2,4,5}-{2,3,4,5})=min({1}) .

This problem is to compute the best reduct for a given conflict situation.

Definitions and Constraints:

I. LetSc {l,2, ..., m} be a subset of issues, then an issue j&S is a secondary issue
in Sifforany 1 <ij, i <n,

C(iy, k) = C(ia, k) for all k €S-{j} implies C(i1, j) = C(in,)).
2. jis aprimary issue in S if it is not a secondary issu¢ in S.

3. Asubsetofissues S {1, 2, ..., m} is called an independent set if each issue in S
is a primary issue in S,

4. An independent set S is called a reduct if for any 1 <4y, iy <n,
C(i1, k) = C(ip, k) for all k €S implies C(iy, j) = C(iz, j) for allj {1, 2, ..., m}
. Let Ry and R, be two reducts of a conflict situation, R; is better than R, if
min(R;- Ry) > min(Ry- Ry)

W

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ¢/ character separating two
consecutive test cases. The last line of the input file contains a °.” character denoting
the end of the input file.

For each of the test cases, the first line contains two positive integers n and m
(separated by blank) denoting the number of agents and the number of issues
respectively. Following the first line, there are » lines that form the conflict situation
matrix. Each line contains a sequence of Os and/or 1s of length m, representing the
attitudes of the agent toward each issue.

Output Format

For each test case of the input, compute the best reduct, which is a subset of
{1,2,...,mj}, for the conflict situation.

Sample Input
2

6 5
01111
11010
10011
10010
10000
11011
/

10 7

1111110
0110000
1101101
1111001
01100112
1011011
1011111
1110000
1111111
1111011

Sample Qutput
{2,3,4,5}
{1,2,5,6,7}

Problem C
Plan Reduction

Input file: pe.txt

Problem Statement

A U.S. company X has many subdivisions in the world. After the tragedy of 911,
company X wants every subdivision plots an emergency plan when terrorists strike
again. Later, these plans are collected at X’s global site. A manager is responsible for
merging these plans and removing the redundant portions of the merged plan to
ensure the company exercises this plan at its minimum cost.

Initially, every subdivision is in a status ‘0°. A status 0 indicates that subdivision
is operating at its site peacefully. Company X categorizes the emergency events into
26 kinds, ranging from ‘a’ to ‘z’. Some emergency events may only happen to some
subdivisions because of their locations or environment. Some events, on the other
hand, may be included in many subdivision plans.

For example, a subdivision X1 comes up with a plan like Fig. 1.

Figure 1: plan X1.

In plan X1, when an emergency event « happens, subdivision X1 shall evacuate
its employees to nearby site 3. If the terrorists strike hard and trigger another
emergency event b, subdivision X1 shall evacuate all its employees from site 3 to X in
U.S. Status ‘1’ indicate all the employees are moved back to U.S. and all the functions
of subdivisions have been ceased. So, a subdivision plan should begin with status 0
and end with status 1.

Now, suppose subdivision X2 comes up with a plan X2 as in Fig. 2.

cd
&

Figure 2: plan X2,

By merging the two plans into one plan (see Fig. 3), the manager in X soon finds
some problems in the merged plan. For example, if site 3 and site 6 are merged, when
event b occurs, the cost of transportation of personnel can be reduced because an
airplane can be filled with maximum load and fewer flights are needed. So, in Fig. 3,
site 3 and site 6 can be merged and site 2 and site 5 can be merged.

7

Figure 4: A plan that cannot be merged.

The manager also discovers a case like Figure 4, where site 2 and site 3 are
considered to be merged. However, company X determines that it is better not to
merge site 2 and site 3 because site 3 is planned to deal with more emergency events
such as d and £ Merging 2 and 3 causes too much management cost. Your goal is to
write a program for the manager to merge the sites of plans.

To give you some hints, in Fig. 3, site 3 and site 6 can be merged because after
them, the remained emergency plans are the same. In Fig. 4, site 2 and site 3 cannot
be merged because their remained plans are not the same.

Note that, you can assume that there are not sites shared by the two subdivision
plans. In subdivision plans, cycles can be presented.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ‘/* character separating two
consecutive test cases. The last line of the input file contains a ‘.’ character denoting
the end of the input file.

In cach test case, it begins with an integer np which is the number of plans to be
merged. In each plan, it begins with a number ¢ where e is the number of edges and
1 <¢<100000. Each edge is represented by (s k& £) where s is the index of source site
and ¢ is the index of destination site. The index value is between 0 and 10000, where 0
and 1 are preserved for initial status and final status. & is the name of emergency event.
It is a single character ranging from ‘a’- ‘7’ .

Output Format

The number of sites for each test case (pleasc exclude the status 0 and status 1).

Sample Input

o Q0 (O O TN O BV}
oy \»n oW N W

O OWWONNONWNONUOWWNO O S NN

Sample Output
2
1

Problem D
Transfer Optimizer
Input file: pd.txt

Problem Statement

Metro Taipei is planning the metro system schedule for the year 2030. At that
time there will be N lines (N <=10), numbered from one to N, and M stations (M
<=50) numbered from one to M. There will be no circular line so each line will have
two directions.

By then the system will be fully automated and all trains will arrive and depart at
precisely scheduled times.

The following rules have been decided in previous board meetings:

1. First trains for every line and direction must leave the starting station at 6am or
6:05am. Last trains must leave the starting station no later than 11:30pm.

2. For each line both directions must follow the same schedule.
Each train must stop at each station for exactly one minute.

4. Trains must arrive at the starting station two minutes before the scheduled
departure; this leaves a two-minute window for passengers to transfer to this train.

The travel time between any two stations for each line is an integer in minutes.
Facilitating line transfers is an important issue. To simplify the problem let us assume
mstantaneously transfer, which means if train A arrives at 10 and train B leaves at 10
then all passengers can still transfer from A to B or B to A. Given a description of the
metro system (i.e., the sequences of stations of each line and the time needed to travel
from one station to the next), you are going to write a program that finds the best
starting time for each metro line so that the daily transfer count of the system is
maximized. The transfer count of train A at stop S is the number of other trains (a
train going in opposite direction does not count) that train A passengers can transfer to
at stop S. As there would be no transfer to trains reached final station, no one would
transfer to a train, which has arrived its destination, the count should exclude trains
that have reached its final stop. The daily transfer count is the sum of all transfer
count of all the trains at all stops from one day.

Input File Format

The first line of the input file contains an integer 7, 1<7 <10, indicating the
number of test cases. There is a single line containing a “/° character separating two
consecutive test cases. The last line of the input file contains a °.’ character denoting
the end of the input file.

For each test case, the first line contains two space-separated integers N and M.
The next N lines contain descriptions of each metro line arranged according to their
metro line numbers, starting from one to N. There are at most fifteen stations for
one metro line, and the format of descriptions is f, s, t,, s,, t,, ..., s, where f
(2< f<20) 1s the number of minutes between two consecutive trains, s, is the

starting station, s is the final station and t, is the time nceded to travel from s, to s ,,, .

QOutput Format

The output contains answers for test cases ordered by their input ordering. Use
‘/’ 1o separate two consecutive answers. For each answer, the first line contains an
integer, which is the maximum achievable daily transfer count. The second line

contains N space-separated bits, b,, b,, ..., b, , where bi=1 means the i”"metro line

start at 6 am, and b, =0 means the i” metro starts at 6:05.

Sample Input

2

25
101 10 2 10 3
10 4 10 2 10 5
/

25

10 1 10 2 10 3
10 4 6 2 6 5

Sample Output
840

00

/

840

10

Problem E
String Decomposition
Input file: pe.txt

Problem Statement

We give scores to those 26 lower-case English characters by letting score(‘a’) = 1,
score(‘b’) =2, ..., and score(‘z’) = 26. For any string S composed of only lower-case
characters, we define score(S) to be the overall scores of the characters divided by the
length of §. For example, score(*“toon”) = (20 + 15 -+ 15 + 14) / 4 = 16 and score(“car”)
=(3+1+18)/3=22/3.

We say that a string S is fair if score(R) = score(7) holds for any non-empty
strings R and T with §'= R T. For example, “car” is a fair string, because score(*c”) =
3 = 19/2 = score(“ar”) and score(“ca”) =2 =< 18 = score(*r”). However, “toon” is
not a fair string, because score(“t”) = 20 > 44/3 = score(“oon”™).

Let S, S, ..., S be a decomposition of a string S, i.e, S=51 S, ... S,,. We say
that S1, Sy, ..., Sy is a fuir decomposition of S if (a) each S; with 1< 7 £ m is a fair
string, and (b) score(S1) > score(S;) > ... > score(S,,). For example, “t”, “00”, “n”,
“car” is a fair partition for “tooncar”, because one can easily verify that all four of
them are fair strings, and score(“t”) = 20 > score(“00”) = 15 > score(“n”) = 14 >
score(*car”) = 22/3. One can also verify that “cartoon” has exactly one fair partition,
i.e., the word “cartoon” itself.

As a matter of fact, each string has exactly one fair decomposition. Given a string
S consisting of lower-case characters, you are asked to compute the fair
decomposition of S.

You may assume that (i) S contains only those 26 lower-case English characters,
and (1) the length of S is at most 200.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ¢/ character separating two
consecutive test cases. The last line of the input file contains a *." character denoting
the end of the input file. For each of the test cases, the input string is given in a single
line.

QOutput Format

For each of the test cases, print on one line the ending indices of each substring
of a fair decomposition separated by space characters.

Sample Input
3
cartoon

/

tooncar

/

ccccecececccecechbbbbbbbbbacaaaaaaaa

Sample Output
.

1347
10 20 30

13

Problem F
Interval Grouping

Input file: pfext

Problem Statement

Let [ay, b1, [a2, 2], ..., [an, bs] be n closed intervals where a; and b; denote the
left and right endpoints of [a;, b;], respectively. Assume all a,s and b;’s are positive
integers and distinct. Two intervals [a;, b;] and [a;, b;] are said to overlap if there exists
a positive integer £ with a;<k <b; and a;<k <b;. A partitioning of the intervals into
groups 1s said to be a legal grouping if the following three conditions are satisfied.

(1) Each group has at least one interval.
(2) Each interval is exactly in one group.

(3) For each group having two or more intervals, any two intervals in it do not
overlap.

The problem asks to find the minimum number of groups among all legal groupings.

Example

Suppose 7 intervals, [1, 4], [12, 15], (7, 13], [3, 8], [5, 10], [2, 6] and [9, 14], arc
given. The 3 groups, <[1, 4], [12, 15], [5, 101>, <[7, 13], [2, 6]> and <[3, 8], [9,14]>,
comprise a legal grouping. Moreover the number of groups, 3, is minimum among all
legal groupings.

Input File Format

The first line of the input file consists of a single number denoting the number of
test cases in the file. There is a single line containing a /> character separating two
consecutive test cases. The end of the file is marked with a line containing a *.’
character.

For each test case, the first line specifies » intervals, with » <10000. The next
n lines give # pairs of positive integers, each denoting the left and right endpoints of
an interval. (Note: the 2»n integers are all distinct.)

Output Format

For each test case, print out the minimum number of groups on a single line

Sample Input

O 0 W

A @ N . S S N G I I N
~J

S O
O = W
(]

Sample Output
4
2

15

Problem G
Two-Goal Scheduler
Input file: pg.txt

Problem Statement

Scheduler in an operating system is used to schedule a set of tasks for some
scheduling goals. There are periodic and aperiodic tasks. A periodic task is executed
cxactly once in every constant interval, period. For simplicity, we assume a periodic
task is ready at the beginning of a period and the deadline is at the end of each period
where a ready task is a task ready to run as long as it gets the right to use CPU. The
periodic task will be ready again at the beginning of the next period. Tasks running
not in the periodic manner are aperiodic tasks, that is, the aperiodic tasks arrive
randomly and only run once. For simplicity, we assume an aperiodic task is ready
when it arrives. However, a ready task might not be always running the CPU because
there might be some other ready task with higher priority. Priority-driven scheduling
approach is commonly used in modern computer operating systems where the systems
always execute the task with the highest priority. A set of tasks are said to be feasible
if every task finishes execution before its deadline. In priority-driven scheduling, a
preemptive approach states that a task with lower priority may be preempted by a
ready task with a higher priority, yielding CPU to the higher-priority task, and
resuming later.

T | —
T |

Ty I |
T | |

Tme O 1 23 45 6 78 91011121314151617 18
Figure 1 Sample Task Schedule

Waiting time is defined to be the sum of the time task spent waiting in the ready
queue, i.c. the time a ready task can not run. Figure I shows that tasks T1, T2, T3,
and T4 which all arrive at time 0 with execution times 5, 2, 6, and 3 and deadlines 10,
5, 18, and 10 respectively are feasible using shortest-job-first scheduling. 7, 7>, T,
and T finish execution at time 10, 2, 16, 5 with waiting time 5, 0, 10, 2 respectively.
Note that using the shortest-job-first scheduling might not always find a feasible
schedule with the shortest total waiting time.

The tasks all arrive at time O and are preemptive. The first scheduling goal is to
be feasible and the second goal is to have the shortest total waiting time. Both goals
need to be achieved.

Input File Format

The first line of the input file contains an integer N, 1 < N < 10, indicating the
number of test cases. There is a single line containing a ‘/° character separating two

16

consecutive test cases. The last line of the input file contains a .> character denoting
the end of the input file.

Each test case is listed by a line of the number of tasks, < 100, and lines of task
execution time and deadline. All the execution times and deadlines are positive

integers, < 500000.

Output Format

For each task set, print out a line of the shortest total waiting time, if feasible,
and -1, if not feasible.

Sample Input

10
5

18
10

N

BN P WNWDNDRPE WSNWOOY N OB W
N

Sample Output
17

5

-1

Problem H
Smallest Partition
Input file: ph.txt

Problem Statement

Let a and b be two relatively prime positive integers. We are interested in the
partition P={p[1],....,p[N]} of (a -+ b) that satisfies the following properties:
p[1]+...+p[N] = a + b, where each p[i] is a positive integer, and
If' S is any subset of P, either
(1) for some subset T of S with the sum equal to a, or
(2) for some subset U of P-S (the difference set of P and S) with the sum equal to b.

There is a trivial partition for any a and b, i.e., (a + b) 1’s, which satisfies the
above properties and can be checked easily. However, here we want to find the
smallest partition, which contains the minimum number of elements. For example,
{2,2,2,2,1, 1, 1} is a minimum partition, for 2 and 9, whose size is 7. Given two
relatively prime positive integer a and b (smaller than 2/32), you are asked to write a
program to find the size of the smallest partition that satisfies the above properties.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a /> character separating two
consecutive test cases. The last line of the input file contains a ‘.’ character denoting
the end of the input file.

For each of the test cases, there is one line of input, that consists of the values of
a and b, which are both less than 2/32.

Output Format

For each test case, the output contains a line with the size of the minimum
partition as described above.

Sample Input
3
2

9

NN 2=

Sample OQutput
3

10

.

18

